Issues in Quantitative Phase Analysis

Arnt Kern & Ian Madsen

This document was presented at PPXRD -Pharmaceutical Powder X-ray Diffraction Symposium

Sponsored by The International Centre for Diffraction Data

This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community.

All copyrights for the presentation are retained by the original authors.

The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research.

PPXRD Website – <u>www.icdd.com/ppxrd</u>

ICDD Website - www.icdd.com

Issues in Quantitative Phase Analysis

Limitations in accuracy and precision are mostly experimental

- Mathematical basis and methodology of quantitative phase analysis is well established and work OK
- Errors arise during application of methods ("PICNIC")

Sample related errors

- The material is not an "ideal powder"
 - Preferred orientation
 - Particle statistics
 - ...
- Absorption

• • • •

Issues in Quantitative Phase Analysis

Operator errors

• Incomplete / wrong phase identification

The Reynolds Cup – what is needed to win?

Mark D Raven and Peter G Self 29 July 2014

CSIRO LAND AND WATER / MINERALS RESOURCES FLAGSHIPS www.csiro.au

Non clay minerals (2002-2012)

- Quartz (18)
- K-feldspar (13)
- Plagioclase (14)
- Calcite (12)
- Dolomite (10)
- Magnesite (4)
- Aragonite (3)
- Huntite (1)
- Halite (6)
- Pyrite (7)
- Siderite (8)
- Barite (5)

- Gypsum (2)
- Anhydrite (2)
- Alunite (1)
- Hematite (6)
- Goethite (5)
- Magnetite (4)
- Anatase (9)
- Rutile (3)
- Ilmenite (3)
- Gibbsite (3)
- Bohmite (1)
- Fluorite (2)

- Apatite (1)
- Tourmaline (2)
- Zircon (2)
- Spinel (1)
- Opal-CT (1)
- Amphibole (3)
- Zeolite (1)
- Epidote (1)
- Birnessite (1)
- Arcanite (1)
- Amorphous (6)

Clay minerals (2002-2012)

- 2:1 Dioctahedral Clays (18)
 - Smectite (montmorillonite, nontronite)
 - Mixed layered (illite-smectite, glauconite-smectite)
 - Mica/Illite (muscovite 2M₁, illite 1M_d, 1M)
- 2:1 Trioctahedral Clays (6)
 - Smectite (saponite)
 - Vermiculite
 - Mixed layered (corrensite)
 - Mica (biotite)

- Kaolin (15)
 - Kaolinite (well and poorly ordered)
 - Halloysite
 - Dickite
- Chlorite (11)
 - Clinochlore, Ripidolite
- Serpentine (2)
 - Lizardite
- Talc (3)
- Sepiolite (1)
- Palygorskite (1)

Misidentified phases (2002-2012)

7

Issues in Quantitative Phase Analysis

Operator errors

- Incomplete / wrong phase identification
- Incorrect crystal structures: space group, atom coordinates, occupancy factors, temperature factors
- Use of poor profile / background models
- Failure to refine parameters: Unit cell, profile parameters, ...
- Refinement of parameters which are not supported by the data: Background, atom coordinates, occupancy factors, temperature factors, microstructure, ...

Issues in Quantitative Phase Analysis

Operator errors, ctd.

- Inappropriate use of correction models just because you CAN doesn't mean you SHOULD!
 - Preferred orientation correction
 - Absorption correction
 - Non-constant diffraction volume
 - ...
- Acceptance of physically unrealistic parameters (esp. thermal parameters)
- Acceptance of incomplete refinements
 - High values of R-factors
 - Refined parameters not checked
 - Visual fit of model not checked

IUCr CPD Round Robin on Quantitative Phase Analysis

- Experimental design for Sample 1
- Eight mixtures of 3 phases
 - Corundum α -Al₂O₃
 - Fluorite CaF₂
 - Zincite ZnO
- Each phase present at a range of concentrations
- ~ 1.5, 5, 15, 30, 55, 95 wt%
- 'Simple' system
- Well defined phases
- Minimal peak overlap
- Little absorption contrast

IUCr CPD Round Robin on QPA

CPD Supplied Data

- Participant's results
- CPD-supplied data
 - Everyone analysed the same data sets
- 92% of returns used Rietveld method
- Note considerable spread in results

IUCr CPD Round Robin on QPA

Participant Collected Data

- Participant's results
 - Participant collected data
 - 75% of returns used a Rietveld method
 - Spread of results is greater than for the CPD-supplied data
- What are the sources of error ?
- Methods ?
- Sample preparation ?
- Data collection ?
- Data analysis ?

Sources of Errors

The sample - is it an *ideal powder*?

Preferred orientation Particle statistics Crystal structure data Sources of Errors The Sample - is it a *Ideal Powder*?

• *Powder*: A "solid containing small crystallites or particles that will flow when agitated", or similar, in accordance to the usual sense of the word in colloquial speech

Sources of Errors The Sample - is it a *Ideal Powder*?

- Powder: A "solid containing small crystallites or particles that will flow when agitated", or similar, in accordance to the usual sense of the word in colloquial speech
- Powder: A "large number of crystallites and/or particles (i.e. grains, agglomerates or aggregates; crystalline or non-crystalline) irrespective of any adhesion between them" and thus can be a loose powder (in the sense of common language), a solid block, a thin film or even a liquid" *
- Ideal powder: A "virtually unlimited number of sufficiently sized, randomly orientated, and spherical crystallites" *

* EN-1330-11 (2007)

Sources of Errors The Sample - is it a *Ideal Powder*?

- None of these examples represents an *ideal powder*
- Sample preparation and presentation requires particular consideration

Sources of Errors

The sample - is it an *ideal powder*? Preferred orientation Particle statistics Crystal structure data

Diffraction of an ideal powder

Diffraction of materials with preferred orientation

Example:

- Blue: Preferred orientation
- Red: No preferred orientation

- Most often seen in samples that contain crystallites with a platey or needle-like morphology
- Extent of orientation can depend greatly on how the sample is mounted

Remedy?

- Avoid software corrections
- Try to improve sample preparation (e.g. backloading) and / or presentation (transmission)
- Try to grind the sample
 - Do not destroy the sample (amorphization, phase transitions, ...)
 - Try different grinding techniques and perform grinding series to verify

Bragg-Brentano geometry

• Parallel or focusing beam Debye-Scherrer geometry using capillaries

Sources of Errors

The sample - is it an *ideal powder*? Preferred orientation Particle statistics Crystal structure data

Diffraction of an ideal powder

Diffraction of a small number of crystallites ("spotiness effect")

Leean	Debye cone of diffracted beam	 Ideally some 10⁸ - 10¹⁰ crystallites in the beam Ideally completely random orientation 					
Incident	Diameter	40µm	10µm	1µm			
Adapted from S. Misture, 2002	Crystallites / 20mm ³	5.97 × 10⁵	3.82 × 10 ⁷	3.82 × 10 ¹⁰			
	No. of diffracting crystallites	12	760	38000			

- Sample contains large crystallite(s)
 - A single particle can cause problems
 - Larger particles have a stronger tendency to preferred orientation
- Too small number of crystallites
 - Sample only consists of a few crystallites or irradiated sample volume too small (⇒ micro-diffraction)

 Parallel beam geometry: Large irradiated sample volume but too few crystallites diffract

_ 🗆 ×

Powder

Powder 01

02/02/05 Created Mag,Quad

Omega Width

001

02/01/05

Example:

- Blue: Particle statistics
- Red: No particle statistics

GADDS: General Area Detector Diffraction System ¥4.1.16 Copyr. 1997-2003 Bruker. Project Eile Edit Collect Process Analyze Peaks Special User Help

Remedy?

- Spotiness effects cannot be corrected by software
 - Spotiness and preferred orientation effects are often confused
- Try to grind the sample
 - Do not destroy the sample (amorphization, phase transitions, ...)
 - Try different grinding techniques and perform grinding series to verify
- If no 2D detector system is available, indexed Phi-scans can help to detect spotiness effects

CPD-4 Phi Scans, 30° Steps

Sources of Errors

The sample - is it an *ideal powder*? Preferred orientation Particle statistics Crystal structure data

XYZ.3H₂O − Calculated Pattern ⇒ Structure as read from database

Fil	e Vie	w F	ïţ	Launch	T <u>o</u> ols	Win	dow H	lelp										
	6	i	•	Þ			*	١	<u></u>	₽	版』	L	\diamond		I ∱ [J.	х	√у
	- 🚞 Gle	obal Immu v	au			9	itructure	Micr	ostructure	Pea	k Type hl	kls (A	\dditio	onal Convoluti	ions	Rpt/Te	xt	
		Emis	sion F	Profile						Use	Value	Code	e	Error	Min		Max	
		Back	kgrour	nd			Use Phase											
		Instru	ument				Spaceg	roup			14							
		ection	S			a (Å)				7.7010000			0.0000000					
	Miscellaneous Structures/bkl Phases						b (Å)				5.3650000	Fix		0.0000000				
	Ū.						c (Å)				12.1260000) Fix		0.0000000				
	<u></u> ⊕…Ø			L			beta (°)			90.41	Fix		0				
	<u>÷</u> … Ø				Ta Space G	roups							-	-) X
Sa	ve Struc	ture in	n STR	forma	Triclinic Monoclinic Orthorhomb Tetragonal Trigonal Hexagonal Cubic	ic	3,P2 4,P21 5,C2 5,1121 6,Pm 7,Pc 7,Pn 8,Cm 9,Cc 9,An 9,Ja 10,P2 10,P1	s /m 12/ms	11,P21/m 11,P121/m1 12,C2/m 12,I12/m1s 13,P2/c 13,P2/n 13,P12/c1s 14,P21/c 14,P21/n 14,P121/c1: 15,C2/c 15,A2/n 15,I2/a	15,A12 s 15,C12 15,I12, 15,B11 15,I112 15,F-2 15,Fd	/a1s /c1s /a1s 2/bs 2/as		P21/ P21/ P112 P112 P21/ P21/	c = P121/c1 = 1 a = P121/a1 = P 1/a 17/b b11 c11	4 121/a1s			

XYZ.3H₂O − Calculated Pattern ⇒ Space group set to P21/n

XYZ.3H₂O − Calculated Pattern ⇒ Atomic Sites?

TOPAS - [Dummy.xy]										
File View Fit Launch Tools	Window	Help	P	B/ 154	1	77 K		0	x ./v	A Ju
Global Global	Values Site	Codes Np	Errors x	ă♥ Λ√2 Min Max y	AL Rpt/Text z	Atom	dL¦	Beq.	× v3	, <u>1</u>
Emission Profile Enission Profile Background Enstrument Corrections Miscellaneous Enistructures/ hkl Phases	6 W_ 7 W_3 8 W_3	1 4 2 4 3 4	0.52473 0.98257 0.27989	0.09140 0.09667 0.34792	0.15257 0.14691 0.83847	W W W	1 1 1	1 1 1	Atomic Numbe W = 74 O = 8	r L
Si ur	te Nan himport	nes ant			A C	tom T Critical	īype ir ly impo	n Site ortant		

Expected density = 1.84 g/cm^3 Calculated density = 8.51 g/cm^3

XYZ.3H₂O – Calculated Pattern

XYZ.3H₂O Database Entry

str												
	space	_group	> 1	.4	Space	e group	(HMS)	: P 1 21	/n 1			
	a 7 b 5	.7053										
	be 90	.1212 .451										
	site											beg 1.0
	site											beq 1.0
	site site											beq 1.0 beq 1.0
	site v	w1	Х	0.52473	У	0.09140	Z	0.15257	occ	0	1.0	beq 1.0
	site v	w2	Х	0.98257	У	0.09667	Z	0.14691	OCC	0	1.0	beq 1.0
	site v	wЗ	Х	0.27989	У	0.34792	Z	0.83847	occ	0	1.0	beq 1.0

Effect of Atomic Displacement Parameters > Yet more traps for the unwary

- ADPs correlate strongly with the Rietveld scale factor
 - Hence, ADPs used during analysis will impact on the final QPA
- Many, many crystal structure database entries have arbitrary ADP values entered
 - 0.0, 0.5, 1.0 Å² for all atoms view with great suspicion

Intensity Variation with ADP Parameter

Effect of Incorrect ADPs on Phase Abundances Sample 1G^{*} – QPA vs Corundum ADP – ZMV method

* IUCr Round Robin on QPA – Sample 1G \approx mixture of corundum (Al₂O₃), fluorite (CaF₂) & zincite (ZnO)

39 | Ian Madsen | CSIRO Mineral Resources Flagship | Quantitative Phase Analysis | DXC2014, Big Sky, Montana

Summary

- Verify, verify, verify
- Generate calculated patterns of individual phases
- Check against
 - Data from pure sample of phase
 - ICDD database

www.bruker.com

© Copyright Bruker Corporation. All rights reserved